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Introduction 
 

Analysing human actions in videos is gaining a lot of interest in the field of 

computer vision due to its broad real-world applications, such as self-driving cars, 

video surveillance, and many other varying places where there are a lot of human-

computer interactions. There are 3 related fields within computer vision: action 

recognition, action detection, and action anticipation. Action recognition aims to 

take a full video as input and classify the actions within the video; action detection 

is similar as it takes a full video and tries to see if the video contains a specific 

action. Both these fields are interested in labelling after the video has finished. 

Action anticipation is different to these two areas and fewer studies have been 

conducted in this area. 

Action anticipation tries to predict future actions; it uses deep learning 

algorithms to infer future actions from recorded videos. Making a prediction of 

future labels for a video before fully observing the entire video is more challenging, 
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Autonomous systems have become more dominant in our lives and 

therefore the ability of these sys-tems to predict future plays an 

instrumental role to guarantee assistance and safety. As a result, ana-

lysing human actions and anticipation in videos is gaining a great deal 

of interest in academic re-search. This paper explores and reviews 

different deep learning techniques used in third-person action 

anticipation to provide an updated view of advancements in this field. 

The task of action anticipation is divided into feature extraction and 

a predictive model for many architectures. This paper outlines a 

project plan for action anticipation in the third person using step-

based activity. We will use several data sets to compare some of these 

different architectures based on their prediction accuracy and ability 

to predict actions in varying time frames. 
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as a classifier has to predict a label for the next action to come while only seeing 

the first few frames, and many actions can be very ambiguous. Many of the 

techniques used in action recognition and detection are transferable to action 

anticipation. Action anticipation can be split into two crucial steps: 

Feature extraction is the process of extracting the most relevant information 

from an image and representing the image in a lower-dimensional space. Techniques 

like CNN (Convolution Neural Networks) use pooling to reduce the dimensions of 

an image. Features are extracted to make feature vectors which can be used by a 

classifier to assign the input to a target label. Feature extraction in action 

anticipation is used with classification to identify the action that has been observed 

from the first few frames. This information can then be passed to the predictive 

model. 

A prediction model is a model that takes the input from the feature extraction 

and makes a prediction. For some architectures, this could be predicting future 

frames from the input image or predicting the labels of the next frames. Algorithms 

that can predict the labels of the next frames are sometimes capable of predicting 

the duration of the action. 

Predicting human actions is difficult, humans leverage a wide range of 

knowledge to infer about what will happen next, but computers can only use the 

information that has been fed to the model. Some action anticipation has tried 

using contextual information to aid prediction. [1] Proposes multiple sensors on a 

car to aid in action anticipation. They built an end-to-end deep learning 

architecture that jointly learns to anticipate and fuse information from different 

sensors. This increased the precision from 78% to 90.5%. Current works like [1] 

anticipate actions for a short time period of fewer than 10 seconds. 

This study designs and runs experiments to compare some of the techniques 

used in action anticipation. We will compare these architectures based on several 

metrics, primarily the accuracy of the architecture, using two datasets. The two 

datasets chosen for this project are, 50 salads and breakfast dataset, more 

information on these two data sets can be found in Section.3. 

 

 

Background 
 

In this section we will outline the various information needed to understand this 

study. 

 

Feature extraction 
 

Feature extraction is the first step of many action anticipation models. Some 

models use handcrafted features (background subtraction, edge detectors), and 

other deep learning techniques. In the original literature review we discussed how 

this could be split into two groups: 

• Holistic/global representations [2] - Feature extraction that extracts 

global representations. Using a top-down architecture, a person is 

localised using methods like background subtraction, then the region of 

interest is encoded [2]. This allows for the extraction of more 

information; however, it is very sensitive to noise and occlusion. It can 

also introduce irrelevant information from the cluttered background. 

• Local representations [2] - Feature extraction that extracts local 

features. These methods encode a video sequence as a collection of local 
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spatio-temporal features. Using a bottom-up architecture, in-terest 

points are detected first, and local patches are extracted from spatio-

temporal interest points [2]. Patches are then combined into a final 

representation. There are benefits to local representa-tions compared to 

holistic. Local representations avoid preliminary steps such as 

background sub-traction that are used in holistic methods. They can, 

however, be overly localised and incapable of capturing sufficient 

amounts of data. The deep learning technique we decided to focus on 

is CNN, which is the most popular deep learning method for feature 

extraction for action anticipation and has a multitude of uses. 

 

CNN for feature extraction 
 

CNN is a feed-forward Neural Network (NN), inspired by animal visual cortexes 

and has been ap-plied in many fields such as pattern recognition, vocal recognition, 

natural language processing, and video analysis. CNN in image classification is used 

to map an input image X, to an output class Y. For example, given an image of a 

dog, a classifier would out- put a class label dog, using its multiple layers of 

computation that extract features to learn a better representation of image data. 

CNNs are layered structures, with most CNNs having a convolutional layer, pooling 

layers, and a classification layer. Each hidden layer of a CNN performs a function 

on the input data. Earlier layers in a CNN extract low-level features (e.g. edges, 

shapes) and higher layers extract more complex features (e.g. face, hair). Various 

works use CNN to extract features, the models we will be investigating use a TSN 

(Temporal Segment Network) model [3], which uses CNN, to extract its features. 

 

Predictive model  
 

The prediction model is the part of the system that produces predictions based 

on either ground truth labels or the ground truth and extracted features. For many 

models, after feature extraction comes the prediction technique. There are many 

different models for predicting future actions, some gener-ate future representations 

of the images while some use the labels to build up relations between action classes. 

 

Recurrent neural networks (RNNs) 
 

RNNs (Recurrent Neural Networks) are different to feed forward NNs, the 

inputs are not independ-ent of each other, for a sequence of data xt = x0 to xn, 

with t being the step, RNNs will calculate the hidden state of h(t) by using the 

current input + the previous hidden state, 

 

h(t) = f (Ux(t) + Wh(t − 1)) 
 

These hidden states act as the memory of the RNN. Works such as [4], propose 

an RNN with an HMM (Hidden Markov Model) to predict actions in a time range 

of up to 5 minutes. This paper, as well as [5] [6], will be spoken about in more 

detail later. [7] Proposes an RNN for predicting the mo-tion of humans. This model 

uses an RNN with a GRU (Gated Recurrent Unit) as ”GRU, do not re-quire a 

spatial encoding layer”. This allows them to train much faster than with an LSTM 

(Long Short-Term Memory). Similar works like [8] [9] [10], build upon [7]’s use of 

RNN and human skele-tons to predict future representations. These works divide 
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the human skeleton into five groups. One thing [7] highlights is RNN’s incapability 

to recover from their own mistakes. 

 

LSTM and GRU 
 

LSTMs were designed to overcome the vanishing gradient problem. RNNs can 

only look back for approximately 10 timesteps. This issue is addressed by LSTM 

that are capable of learning more than 1,000 timesteps depending on the complexity 

of the network. They do this by enforcing constant error flow-through constant 

error carrousels within special units [11], called cells. LSTMs have gates that can 

learn which data in a sequence is relevant and can choose to keep it in the cell 

state or throw it away, by passing along relevant data through the cell state, 

information from earlier steps can make it to later steps. The three gates LSTM 

has the forget gate, update gate and output-gate. Various works such as [12] use 

LSTMs to make their predictions. This paper as well as [5] [6] [13], will be spoken 

about in more detail in later sections. 

[8] Proposes a GRU to improve the performance of the architecture. GRU is 

similar in structure to an LSTM but has a simpler structure by combining the three 

gates from LSTM into two gates: updat-ing gate and resetting gate. The structure 

of the architecture is bidirectional RNN which consists of 300 GRU cells. It feeds 

the data to an RNN, after the RNN comes the batch normalization layer. Batch 

normalization is a training technique that standardises and normalises the inputs 

[14] to keep the data in the same scale. As the input goes through multiple layers 

and activation functions the data is transformed, this can lead to internal covariate 

shift in the data. Work such as [15] use a GRU, and will be explored in more detail 

later. 

 

CNN 
 

[16] Proposes a CNN architecture that can predict future frames from unlabelled 

videos. This archi-tecture is appropriate for unsupervised learning as it doesn’t 

require the ground truth for predictions and future frame representations have 

shown promise in a large range of tasks. Another method ex-tends an RNN to 

create an rCNN (recurrent CNN) to predict future frames, the architecture is able 

to complete motions from observed frames but the motion is slowed down and the 

model eventually converges to a still image [17]. [16] uses a deep regression network, 

as the complexity can easily be expanded and can train on large data. Using 

regression, which for one input can have multiple out-puts because of the ambiguity 

of seen frames. 

 

 

Datasets 
 

The data set used by an architecture to train is an important factor in its 

prediction capabilities. Some data sets have long sequences and large variations in 

the actions that are being performed. Data sets tend to also be highly controlled 

and use a sequence of scripted actions recorded in one environment using only a 

few viewpoints, which can lead to less generalisation to the real. 

The data set used to measure the accuracy of a model is an important 

component in how well the model performs. Some datasets have long sequences 

and large variations in the actions performed, while some have shorter videos and 
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a much smaller sample size. Different data sets are made for dif-ferent purposes. 

The breakfast dataset [18], uses real world recording setup so that the dataset ex-

presses real world conditions 

50salads [19] and breakfast are the data sets that will be used in this project. I 

chose these two da-tasets to see how the model will perform when a smaller dataset 

is being used versus a larger dataset. Furthermore, 50 salads is in a controlled 

environment, whereas the breakfast dataset is in an uncon-trolled environment, 

which may affect the ability of the prediction models to predict actions. The 

average video length in the breakfast data set is 2.3 minutes, while the average 

video length in the 50 salads data set is 6.4 minutes. In both datasets, the longest 

video is ten minutes long. 

 

Label representation 
 

The ground truth is passed in as a sequence of annotations for models that use 

labels, and these anno-tations describe what is happening through each frame or a 

range of frames for an action. The model is fed the ground truth during training. 

For predictions, the models will generate a file that is similar to the ground truth 

and describes the action at a specific time. This can be used to evaluate how well 

the model predicts by comparing the predictions with the ground truth labels of 

the unseen testing set. 

 

Feature representation 
 

We use the provided TSN-rgb [3], which the authors of Sections.4.4 [12] have 

pre- trained on the epic kitchens dataset which uses egocentric videos. This 

information is then stored in a Lightning Memory-Mapped Database (LMDB), 

which allows for concurrent writes and reads using transaction management. 

 

 

Models 
 

This section outlines the models used in this study. There are seven models in 

total that will be com-pared, and each will be described in detail. The models can 

be divided into two groups: those that make predictions based on video features 

coupled with ground truth annotations and those that make predictions based on 

ground truth labels only. The following sections use ground truth labels: Sec-

tion.4.1, Section.4.2 and Section.4.3. The following sections use features: 

Section.4.4, Section.4.5 and Section.4.6. 

 

When will you do what? - Anticipating Temporal Occurrences of 
Activities 

 

An RNN network and a CNN network are used in this paper. The goal of this 

project was to be able to predict activities that would occur over a long period of 

time (up to 5 minutes). To be able to accu-rately predict the classes, their order, 

and the duration of the actions’ start and end. The RNN model should be able to 

predict actions recursively using previous output as input. The CNN model tries 

to predict actions all at once. 
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Pipeline 

The RNN system predicts the output in a recursive manner. The RNN predicts 

the remainder of the last action as well as the next action [4]. This is done again 

and again until the video ends. The pipe-line for the RNN architecture works as 

follows: 

The network is fed with a sequence of (length,1-hot class encoding)-tuples as 

input. This is fed into a batch generator to create the batches for training. 

Individual files are chosen for testing, and predic-tions are made on each one 

individually. 

• The network uses the input to predict three elements: the last observed 

segment’s remaining length, the label for this segment, and the length 

of the next segment. 

• The prediction is combined with observed segments to create a new 

network input. 

• To produce the next prediction, the new input is forwarded through 

the network. 

• The final result is obtained by repeatedly forwarding the previously 

generated prediction until it predicts the desired number of frames [4], 

as shown in Fig. 1. 

 

 

 

 
 

Figure. 1.   Architecture of the RNN system [4] 

 

The RNN model uses two stacked layers of 256 gated recurrent units. At the 

input and output, the RNN model employs two stacked layers of 256 gated 
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recurrent units and fully connected layers. To ensure positive length outputs, 

rectified linear units are used as the output layer for both length pre-dictions and 

remaining length. 

A softmax layer is used to make label predictions [4]. The CNN system aims to 

predict all actions in one single step. The pipeline for the CNN architecture work 

as follows: 

• The input labels are encoded into a matrix with columns for classes 

and rows for action segments. 

• The matrix is filled in the order in which the actions take place [4] as 

shown in Fig.2. 

• The matrix is then forwarded through a CNN [4]. 

• The output is reshaped and normalised after the connected layers to 

produce a new matrix of the same size as the input matrix. 

• For temporal smoothing, a 1D Gaussian filter is applied to each 

column. After that, a function is applied to each row to convert it back 

into sequence labels [4]. 

  

 

 
 

Figure. 2. Architecture of the CNN system [4] 

 

 

Weakly-supervised dense action anticipation 

The aim of this paper was to develop a model that could predict future actions 

based on incomplete action and duration labels in video sequences. The aim was to 

predict future sequences from videos that only had specific events labelled, as well 

as to predict future sequences from videos that did not have duration information. 

This would allow for prediction without the need for full annotations. Creating 

annotations is a time-consuming task. To do so, the model will learn on a small set 

of fully labelled data and weak labels, in which the video segment is only annotated 

with the first action class of the expected sequence, as shown in Fig. 3a. This can 

help reduce labelling time by requiring only a single action class label rather than 

all of the labels in the sequence [5]. 
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Figure. 3. Architecture of the system that include the primary module, conditional module and sequence refinement 

[5] 

 

Pipeline 

The model has three components. A primary module is used during inference, 

a conditional module is used to generate pseudo labels, and a sequence refinement 

module is used to refine the estimated pseudo-labels [5]. 

 

Conditional module 

The conditional module is a support component that has been trained to 

generate pseudo labels for the weak set. The conditional module remains fixed after 

training. This component uses a CNN as part of its Temporal Aggregation Block 

(TAB) blocks and a LSTM for sequence prediction [5]. 

 

Primary module 

The primary module, which is used for inference, predicts the future action and 

duration of a se-quence given an input video. During training the module attempts 

to minimise a loss using the la-belled ground truth and the refined pseudo-labels. 

This component has a similar layout to the condi-tional module and uses a CNN 

as part of its TAB blocks and a LSTM for sequence pre- diction [5].  

  

Sequence refinement module 

The pseudo-labels from the conditional module are refined using the sequence 

refinement module. To produce a refined prediction label, this module combines 

the predicted labels from the primary module with the estimated pseudo-labels 

from the conditional module. Because the conditional module is trained on only 

the weak labels, which is a small set, there is a risk of confirmation bias, according 

to the authors. To mitigate this, a refinement module is used that uses input from 

both the primary and conditional modules. This component uses multiple linear 

layers [5]. 

This model works by feeding one label into the system, then using an auxiliary 

model to generate pseudo-labels for the remaining labels in the sequence. The 

conditional model is an auxiliary model that is trained with a small set of fully 

labelled labels to generate pseudo-labels, which are then used on a larger weakly 

labelled training set. After that, the pseudo-labelled weak data is used to train the 



Open Science Journal 
Research Article 

Open Science Journal – October 2023  9 

primary anticipation module, which will be used to make predictions. An additional 

attention module accounts for the correlations between actions and is used to 

predict the duration of the actions [5]. 

 

Learning to abstract and predict human actions 
 

The aim of this project was to look at action anticipation in the same way that 

humans do when plan-ning tasks. This was done because traditional methods that 

only look at the sequential properties of action sequences can cause earlier tasks to 

fade and lead to long-term prediction error accumulation. A more human way of 

planning processes is used to approach this issue. This process begins with high-

level tasks and progresses to more detailed sub tasks. The authors created 

Hierarchical Encoder Refresher Anticipator (HERA) for activity anticipation to 

accomplish the above tasks. The HERA model is made up of three networks: one 

that encodes the past, another that refreshes the states, and another that decodes 

the future (as shown in Fig. 4.). 

 

 

 
 

Figure 4. Architecture of the HERA system (Square blocks are Encoder GRU cells. Triangles are re-freshers. 

Circles are anticipators [6] 

 

Pipeline 

The HERA model can have multiple levels. We will be focusing on HERA with 

two levels. When there are two levels, the first level is coarse activities (Cx) and 

the second level is fine actions (Fx). An example of Coarse level activity would be 

”eat”, which would have fine actions of ”starter”, ”main course” and ”desert”. 

 

Encoder 

The encoder’s job is to create multi-level representations of the recent video 

snippets, which the re-fresher and anticipator then use [6]. The encoder and 

anticipator have an identical architecture of two levels of RNN’s. The input is 

rolled out by each unit. The top level is used for coarse activities. It takes the 

coarse labels and their duration as input, which is then encoded into a matrix. The 

lower level is for fine activities, which does the same operation as the coarse level. 

These levels work asyn-chronously. 
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Anticipator 

The input from the previous prediction step is fed back to the anticipator. Using 

a multi-layer per-ceptron, the hidden state at both levels is used to infer the label 

and duration of the next action. The predictions are given out in stages until the 

entire video has been watched. The coarse level deter-mines the total task duration, 

while the fine level concludes when the parent coarse level length pre-diction is 

reached. 

At the interruption point t∗, where one prediction ends and another begins, the 

system connects the encoder and anticipator [6]. The encoder’s predictions are sent 

to the anticipator if the interruption occurs at the end of an action boundary. If 

the interruption occurs in the middle of an action, leaving an unfinished action, the 

refresher is used to collect all data and predict the remaining length of the 

interrupted action using a multi-layer perceptron. 

 

 

What would you expect? Anticipating egocentric actions with rolling-
unrolling LSTMs and modality attention 
 

The aim of this paper was to do egocentric video action anticipation and 

recognition. The goal of the model is to predict actions for different anticipation 

times, such as 2 seconds before they happen. The R-LSTM (Rolling LSTM) is in 

charge of recursively encoding a video snippets so that the past can be summarised. 

When the method must anticipate actions, the ”Unrolling” LSTM (ULSTM) takes 

over the RLSTM’s hidden and cell states and makes future predictions [12]. 

The processing is divided into two stages: an encoding stage for S_enc time-

steps and an anticipa-tion stage for S_ant time-steps. The model summarises the 

semantic content of the S_enc input video snippets without making any predictions 

in the encoding stage, whereas in the anticipation stage, the model continues to 

encode the semantics of the S ant input video snippets and produces S ant action 

scores that can be used to perform action anticipation [12]. The two stages can be 

seen in Fig. 5. 

Two LSTMS are used in the system. One LSTM is used to encode past 

observations, while the other is used to predict future actions. The RLSTM is in 

charge of encoding previous observations and summarising what has occurred up 

to that point in time. The ULSTM focuses on anticipating future actions based on 

the RLSTM’s cell vectors. 
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Figure. 5. Example of RULSTM modality branch, with S_enc = 1 and S_ant = 3 [12] 

 

Pipeline 

We will focus solely on the RGB pipeline because we’re only using RGB. The 

RGB branch com-putes the feature vector fm,t by using a batch normalised 

inception CNN to extract features from the last frame of a video snippet. This 

yields action representation of the input frame, which the RLSTM can use to 

summarise what happened previously. There are several identical branches that 

analyse the video based on the modalities, such as RGB, optical, and I3D. Fig. 5. 

shows an example branch of the system. For this example, φm will represent RGB 

videos. In this example, a feature vector fm,t is fed into the system’s mth branch. 

In the encoding section, the system recursively encodes its semantic content. 

In the anticipation stage, the ULSTM is used to make future predictions. It 

uses the hidden states and cells of the RLSTM and loops over the current video 

snippet until it reaches the beginning of an action. Sequence completing pre-

training (SCP) is used in the system so that the two LSTMs can spe-cialise in 

encoding and anticipating, respectively [12]. The ULSTM’s connections are 

changed during SCP to aid in training. The RLSTM concentrates on summarising 

previous representations rather than attempting to predict the future. 

 

 

Temporal aggregate representations for long-range video 
understanding 

 

The system is designed to work with a variety of inputs, ranging from low-level 

visual features to high-level semantic labels, and to efficiently integrate recent 

observations with long-term context [13]. 

 

Pipeline 

A non-local block (NLB), a coupling block (CB), and a temporal aggregation 

block (TAB) make up the architecture. As shown in the Fig. 6., NLB are nested 

in CBs, and CBs are nested in TABs. The system’s flow is as follows: the NLB 

receives recent and spanning features, the CB’s output is sent to the TAB, which 
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can be used for either next action anticipation or dense anticipation, and the TAB’s 

output is chained together. 

The NLB’s job is to capture relationships between spanning and recent snippets. 

This allows the system to capture long-range dependencies. This component uses 

a 2 CNN’s to achieve this. The coupling block uses concatenation and a linear layer 

to connect the recent and spanning snippets. These yield fixed-length 

representations that account for the beginning point of a recent snippet as well as 

the length of the spanning snippet. This component uses two NLB, one for past 

and one for recent snippets. 

 

 

 
Figure. 6. Architecture of NLB, CB and TAB used for generating temporal aggregate representations [13] 

 

As shown in the TAB section of the Fig.6., by grouping outputs from multiple 

CBs, the final repre-sentation for recent and spanning past is computed. The final 

spanning representation is a max over all the spanning fixed length representations. 

TAB outputs a representation that aggregates and en-codes both recent and long-

range past to make temporal aggregate representations [13]. This compo-nent uses 

three coupling blocks. 

The model then predicts actions based on these representations. A classification 

layer (linear + softmax) can be used directly with the temporal aggregate 

representations. To accomplish this, the TAB layer’s spanning fixed length 

representations are concatenated and passed through a classifica-tion layer [13]. 

The sequence predictor is used to foresee what will happen next. It concatenates 

all recent and spanning temporal aggregates, as well as the classification layer’s 

outputs, and feeds this output to a linear layer before sending it to a single layer 

LSTM. The label and duration are outputted by the LSTM (See Fig. 7.). 
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Figure. 7. Architecture of anticipation model. Classification model (left) and sequence prediction (right) [13] 

 

 

Self-regulated learning for egocentric video activity anticipation 

 

The aim of this paper is similar to that of Section.4.4 and Section.4.5. The aim 

of this paper was to do egocentric video action anticipation and recognition. The 

goal of the model is to predict actions for different anticipation times, such as 2 

seconds before they happen. 

 

Pipeline 

This architecture has three primary components, as indicated in Fig. 8. 

 

 

 
Figure. 8. Architecture of the system [15] 

 

Observed information 

Encoding When a video is input into the system, a feature extractor and an 

aggregation function are used to extract the features and hidden representation at 

the final seen bit of the clip. To encode the video, an RNN is used, yielding F and 

h0, which are the feature and hidden representations, re-spectively [15].  

 

Recursive sequence prediction 

A GRU layer is utilised in the recursive sequence prediction stage to build a 

new representation, which is then fed into the Rea layer [15] to generate another 

new representation, which encodes the current video content. The video 
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representation is fused with the hidden representation after it has been processed 

by these two modules. The procedure is continued until the anticipated time-step 

is achieved; for example, if the anticipation time-step was 2 seconds, the operation 

would be repeated until the 2 second mark was reached. 

 

Target anticipation 

The final representation is obtained after the recursive pre- diction. The target 

anticipation stage uses semantic information to improve the final representation 

and outputs three values for the action, objects, and expected activity probability 

distribution [15]. 

 

 

Results and evaluation 
 

In this section, I discuss the experiments I carried out for the models discussed 

in Section.4. It is im-portant to note that all the training and experiments were 

done on Google Colab’s GPUs. After the models have been trained, the next step 

is to conduct experiments and analyse the results to deter-mine how well the project 

met its objectives. The datasets were divided into three categories: train-ing, 

testing, and validation, with validation accounting for 20% of the training data. 

This was done because one of the models needs validation data to run correctly. 

Only the training and testing data are used in the remaining models. Some of the 

videos were removed from the splits because there were no corresponding RGB 

videos to do feature extraction with, as stated in Section.3, so they will not be 

included. Each model will run with the default parameters, which are the 

parameters specified in the paper, as stated in Section.4, so that we can compare 

the models to the test paper as well as each other. 

We’ll divide the results and experiments into two groups because the models 

can be split in two. One of the models, however, will be evaluated separately; this 

model is a recent model that aims to progress action anticipation research into a 

new field, which is why it has been included here to demonstrate what works that 

deviate from the standard look like. 

 

Metrics 

The original literature review outlines a few of the metrics that could be used 

to evaluate the mod-els. We have decided to go for the following: 

 

• Accuracy 

• Mean over all classes / balanced accuracy score. Average accuracy 

obtained on each class 

• Precision 

 

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

• Recall  
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

 

• F1 score  
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2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

All of the metrics discussed above are used in models that use ground truth 

labels as input. It was simple to add more metrics because these methods return a 

sequence of y pred. Due to the way fea-ture extraction models calculate accuracy, 

they will only use accuracy and recall. 

 

Results  
 

The results of the experiments can be found in the Tables 1 and 2. The graphs 

9 and 10 make it easier to understand the results. 

 

Table 1. Results of the feature extraction methods, to one decimal place 

Ta(s) % Metric 2 1.75 1.5 1.25 1 0.75 0.5 0.25 

    50 Salads      

SRL [15] Accuracy 23.9% 23.5% 24.5% 25.3% 25.2% 26.8% 28.6% 30.9% 

 Recall 22.8% 22.0% 22.8% 23.4% 23.5% 24.0% 26.0% 27.8% 

RULSTM [12] Accuracy 28.1% 27.8% 29.4% 29.4% 27.5% 28.3% 29.6% 30.4% 

 Recall 26.1% 26.0% 27.8% 27.3% 25.2% 25.8% 27.2% 27.6% 

    Breakfast      

SRL Accuracy 29.4% 29.5% 29.5% 28.9% 29.4% 30.1% 30.8% 31.6% 

 Recall 11.9% 12.2% 11.8% 11.2% 11.9% 12.2% 11.9% 11.1% 

RULSTM Accuracy 31.8% 31.8% 32.3% 32.3% 32.4% 32.6% 32.0% 33.3% 

 Recall 13.5% 12.8% 12.9% 12.8% 12.6% 12.1% 11.7% 11.8% 

 

 

Table 2. Results of ground truth label models, to one decimal place 

Observation %   20%     30%  

Prediction % Metric 10% 20% 30% 50% 10% 20%  30% 50% 

   50 Sal ads       

Weakly supervised [5] Accuracy 10.5% 18.7% 10.7% 8.4% 10.1% 18% 13.0% 9.6% 

 MOC 6.1 % 11.5% 12% 7.9% 5.0% 16.5% 7.9% 9.9% 

 Precision 8.8 % 17.4% 2.7% 11.4% 8.4% 6.8% 3.6% 3.7% 

 Recall 10.5 % 18.7% 10.7% 8.4% 10.1% 18% 13.0% 9.6% 

 F1 9.6 % 18.0% 4.3% 9.7% 9.2% 9.9% 5.6% 5.3% 

HERA [6] Accuracy 24.8% 9.9% 7.1% 4.7% 17.2% 2.9% 7.1% 3.9% 

 MOC 33.3% 15.9% 13.8% 9.5% 25.8% 11.2% 7.2% 3.4% 

 Precision 38.3% 23.9% 23.9% 21.7% 28.3% 23.9% 20.6% 18.9% 

 Recall 27.5% 12.9% 8.4% 5.5% 27.1% 11.1% 9.1% 4.5% 

 F1 30.4% 16.5% 12.3% 8.5% 25.8% 14.5% 12.3% 7.2% 

CNN [4] Accuracy 38.9% 32.4% 26.6% 20.3% 17.4% 17.1% 18.2% 13.6% 

 MOC 11.3% 11.8% 11.3% 9.1% 12.5% 11.2% 10.3% 6.0% 

 Precision 27.2% 18.8% 14.3% 6.5% 8.6% 12.0% 10.0% 4.2% 

 Recall 27.2% 13.5% 13.1% 8.3% 16.7% 10.5% 10.1% 6.5% 

 F1 27.2% 14.9% 12.6% 7.2% 11.4% 11.2% 10.1% 5.1% 

RNN [4] Accuracy 32.1% 16.3% 10.9% 6.5% 38.7% 21.7% 14.5% 9.3% 

 MOC 38.6% 22.7% 14.2% 10.9% 26.6% 15.5% 10.4% 4.7% 

 Precision 18.0% 4.8% 2.1% 0.7% 23.7% 7.9% 3.5% 0.9% 

 Recall 32.1% 16.3% 10.9% 6.5% 38.7% 21.7% 14.5% 9.3% 
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 F1 20.9% 6.8% 3.3% 1.3% 28.0% 11.0% 5.4% 1.7% 

   Breakfast      

Weakly supervised Accuracy 68.7% 51.3% 45.1% 46.6% 71.8% 63.1% 56.0% 55.1% 

 MOC 68.5 % 49.3% 47.0% 47.8% 72.7% 65.4% 53.8% 55.4% 

 Precision 65.7 % 52.1% 52.3% 50.2% 70.6% 60.3% 62.0% 65.4% 

 Recall 68.7% 51.3% 45.1% 46.6% 71.8% 63.1% 56.0% 55.1% 

 F1 67.2 % 51.7% 48.4% 48.3% 71.2% 61.7% 58.8% 59.8% 

HERA Accuracy 64.6% 50.7% 42.9% 36.3% 69.9% 57.7% 46.4% 36.7% 

 MOC 59.6% 51.2% 44.5% 41.5% 71.8% 57.4% 46.5% 37.8% 

 Precision 77.2% 63.6% 54.3% 48.0% 78.7% 67.5% 56.0% 47.4% 

 Recall 69.0% 61.6% 55.3% 48.4% 75.7% 67.7% 59.5% 51.6% 

 F1 70.6% 59.7% 52.1% 45.9% 75.2% 65.3% 55.5% 48.0% 

CNN Accuracy 74.4% 67.5% 66.7% 65.1% 75.9% 73.0% 70.8% 70.9% 

 MOC 47.0% 41.5% 39.0% 35.6% 53.5% 46.3% 44.4% 42.8% 

 Precision 76.8% 73.8% 72.3% 70.8% 72.8% 74.8% 73.6% 72.1% 

 Recall 74.4% 67.5% 66.7% 65.1% 75.9% 73.0% 70.8% 70.9% 

 F1 75.6% 70.6% 69.4% 67.8% 74.3% 73.9% 72.2% 71.5% 

RNN Accuracy 66.6% 61.1% 58.3% 56.6% 77.2% 68.9% 67.6% 62.6% 

 MOC 51.3% 42.1% 37.6% 34.3% 61.3% 51.1% 48.5% 42.7% 

 Precision 76.5% 69.3% 66.8% 66.9% 79.2% 77.4% 76.6% 74.0% 

 Recall 66.6% 61.1% 58.3% 56.6% 77.2% 68.9% 67.6% 62.6% 

 F1 71.2% 65.0% 62.3% 61.3% 78.2% 72.9% 71.8% 67.9% 

 

 

  
                (a) 20% Observation 50 Salads                       (b) 20% Observation breakfast 

 

  
                    (c) 30% Observation 50 Salads                      (d) 30% Observation breakfast 

Figure. 9. Plots of different observation percentages 
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(a)           (b)  

Figure. 10. Plots of different anticipation times and the accuracy 

 

 

Evaluation 
 

Datasets 

The data sets chosen were a good choice for demonstrating the importance of 

the data set used for action anticipation. There are far fewer videos in the 50 Salads 

data set, which must have hampered the models’ ability to learn about the data. 

Precision and accuracy suffered as a result of a lack of data to learn from.  

For example, for 50 salads, the average accuracy among the ground truth 

models was 20.9 percent, while for breakfast it was 73.7 percent, resulting in a 

difference of 52.9 percent. In terms of MOC, some models, such as weakly 

supervised, which performed best on breakfast, performed the worst on 50 salads. 

Except for temporal aggregate representations, feature extraction models perform 

slightly better on the breakfast data set than on the 50 salads data set. For the 

breakfast dataset, temporal aggregate representation has a similar accuracy 

compared to the ground truth models, while for 50 salads, it has a similar but 

better result than the other two feature extraction models. 

 

Models 

• Weakly supervised. For 50 Salads, this model performs poorly, and the 

metrics fluctuate depend-ing on the prediction percentage. This 

demonstrates that the model did not have enough time to properly 

learn. Because this model uses a set of weak labels, without enough 

data to learn on the weak set, which is already a small portion of the 

data, the model’s predictions become almost ran-dom. This model, on 

the other hand, performs exceptionally well in terms of MOC for the 

break-fast dataset, which is a much larger data set, with a peak MOC 

of 72.7 percent, the highest in the study. When compared to the 

original paper, the model’s experiments for 50 Salads are less than the 

reported average of 35.4 percent. The model is very similar to the 

reported average of 61.3 per-cent for the breakfast dataset. 

• HERA. When only predicting recent events, this model performs well 

for 50 salads, but then rap-idly deteriorates. When the model has to 

predict even further into the future for both datasets, it begins to 

deteriorate, though the deterioration is much slower for the breakfast 

data set. HERA’s MOC range is the widest among the ground truth 

models, indicating that the model has difficulty predicting in much 
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longer time frames. When compared to the original paper’s model, the 

model performs very similarly to the original paper’s model. The 

average prediction percentage for 20 per-cent observation for F1 score, 

which is the metric used in the paper for HERA, was 51.5 percent, 

which is similar to the 57.1 percent achieved in this study. However, 

when comparing MOC, the MOC from the paper was 63 percent, 

whereas we only got 49.2 percent in this study. The original MOC 

score for 30 percent observation was 62.8, and this study obtained 53.4 

percent. 

• CNN. In terms of MOC, this model, like the others, does not perform 

well for 50 salads, but the range of predictions is very consistent. This 

model achieves the highest accuracy for 50 salads, with 38.9 percent 

accuracy based on 20 percent observation and 10 percent prediction. 

This model performs consistently within a range of 10 percent +- for 

breakfast. When compared to the original paper, the MOC was 47 

percent for breakfast and 25.1 percent for 50 salads, based on the 

average of the different prediction percentages for 20 percent 

observation. This study’s results were 40 percent and 10.9 percent, 

respectively. 

• RNN. When only predicting recent events, this model performs well 

for 50 salads, but then rapidly deteriorates. When the model has to 

predict even further into the future, it begins to deteriorate, similar to 

the CNN created by the same people, though this deterioration is much 

slower for the breakfast dataset. When it comes to predicting 50 

percent, however, this model has the lowest pre-cision of all the models. 

However, for the breakfast dataset, this model has the second highest 

ac-curacy score. When compared to the original paper, the MOC was 

40 percent for breakfast and 28.9 percent for 50 salads, based on the 

average of the different prediction percentages for 20 percent 

observation. 41.3 percent and 21.6 percent, respectively, were achieved 

in this study. 

• SRL. When predicting in different time steps, this model is very 

consistent, with the best accura-cy of 30.9 percent for 50 salads. When 

predicting 0.25s into the future, the model performs better for the 

breakfast dataset, achieving 31.6 percent. When compared to ground 

truth models, this model and other feature extraction methods predict 

in a much shorter time, making comparisons difficult. The original 

paper does, however, include a table with different observation 

percentages, similar to Table.2. The 50salads and breakfast dataset 

results for different anticipation times, similar to the tests I conducted, 

are not included in the original paper. 

• RULSTM.  When using a larger dataset, this model outperforms SRL, 

achieving 33.3 percent accuracy when predicting 0.25s into the future. 

This paper, like SRL, does not include results for the 50 salads and 

breakfast datasets. 

• Temporal aggregate representations. This model outperforms the other 

two feature extraction methods in terms of accuracy, achieving 60.6 

percent for break- fast and 31.6 percent for 50salads. It has a lower 

recall for 50 Salads, but a higher recall for breakfast than the other 

two feature extraction methods. The original paper does, however, 

include a table with different observa-tion percentages, similar to 
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Table.2. This model could be changed to predict with different obser-

vation percentages. 

 

 

Table 3. Results for temporal aggregate 

Dataset Accuracy Recall 

50 Salads 31.6% 24.4% 

Breakfast 60.6% 20% 

 

 

Conclusion 
 

In conclusion, in this study, we have discussed and laid out the design of the 

action anticipation ar-chitectures and experiments, as well as compared the models. 

The results were tabulated, and graphs were created to show the model’s quality. 

As a result, several methods were implemented, evaluated, and the results were 

displayed. There is a general way of augmenting a data set for use with these 

methods.  Overall, this work sets out to create a survey of third-person action 

anticipation models. The motivation behind the survey is that, while this task is 

in a niche, increased research interest has led to the creation of many new publicly 

available models. So, an evaluation of current architectures focuses on the type of 

model at the core of creating predictions, which may allow researchers to use more 

suitable models within this task. Potential avenues for future research could be 

creating addi-tional datasets and using generative AI. 
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