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Introduction 
 

Many complex problems of various scientific fields such as fluid dynamics, 

Bio-medical processes, solid state physics, plasma physics, mathematical biology, 

chemical kinetics etc. can be modeled by systems of linear or nonlinear ordinary 

differential equations (ODEs). In this row, due to further development, time 

delay systems have been modeled through Delay differential equations (DDEs). 

DDE is a differential equation in which time derivatives of dependent variables 

depends upon the solution and its derivatives at previous times. It has many 

applications in electronic, mechanical, chemical, transportation, biological 

systems, economic growth [1],[2],[3],[4],[5],[6],[7],[8]. 

Fractional differential equations are another kind of differential equation 

which used for model the systems with long-range interactions or systems with 

memory [9], [10], [11]. If we combine above said two concepts i.e. Delay 

Differential Equations and Fractional Differential Equations, the real-world 

problems might be modelled more accurately and as result Fractional Delay 

Differential Equations (FDDEs) comes in the role. It has found that FDDEs have  

numerous applications in chemistry, physics, bioengineering, population 
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In this paper, an approximate analytical method, New Variational 

Iteration Method (NVIM) is introduced in this paper for the 

approximate analytical solution of Fractional Delay Differential 

Equations (FDDEs). The algorithm is illustrated by studying 

initial value linear and nonlinear problems. The solutions thus 

obtained are presented and compare with exact solution. On the 

basis of comparison, it is concluding that only few iteration is 

required to get an approximate analytical solution. 
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dynamics, control systems, electro-chemistry and many other areas [12],[13], 

[14],[15],[16]. In this context, a number of papers are given which describes 

fractional Bloch equation with delay. Some recent references in this context see 

Refs. [17], [18] and the references therein. Interesting phenomenon such as chaos 

are observed in the form of fractional delay systems [19]. Hence, the fractional 

order delay differential equations have great importance for interdisciplinary area 

of research in recent years. Existence and uniqueness theorems on FDDEs have 

been discussed in [20], [21], [22] and [23]. 

The real-life mathematically modeled problems are still difficult to solve either 

theoretically or numerically. Most of the nonlinear fractional differential 

equations do not have exact analytic solutions, so approximation and numerical 

techniques have to be used. Many advanced methods such as Adomian 

Decomposition Method (ADM), Homotopy Perturbation Method (HPM), 

Homotopy Analysis Method (HAM), New Iterative Method (NIM) etc.  have 

been developed to solve such problems and to get approximate analytical 

solution. The Variational Iteration Method (VIM) [24] is a relatively different 

approach to provide an analytical approximation to linear and nonlinear 

problems. They are particularly valuable as tools for applied mathematicians and 

scientist, because this method provide immediate and visible symbolic terms of 

approximate analytic solutions to both linear and nonlinear fractional differential 

equations without linearization or discretization in a very lucid manner. J. H. He 

[24, 25] was the first who proposed Variational Iteration Method  and successfully 

applied to autonomous ordinary and partial differential equations and in other 

fields. In this row, Odibat and Momani [26] implemented the Variational 

Iteration Method to solve nonlinear ordinary differential equations of fractional 

order. 

It is well known in the literature, this algorithm provides the solution in a 

rapidly convergent series obtained due to iterations [25, 26 & 27]. The 

implementation of the variation iteration method in Ref. [28] amongst others has 

shown reliable results in that few terms only are needed to obtain accurate 

solutions. 

The basic motivation of this work is the application of the variational 

iteration method (VIM) to solve the Linear and Nonlinear FDDEs. Daftardar-

Gejji V. et al. [36] and Jhinga A.  and Daftardar-Gejji V. [34, 37]  have been 

already solved FDDEs numerically. But, the main objective of this paper is to 

extend the application of the variational iteration method as New Variational 

Iteration Method(NVIM) to provide approximate analytical solutions for initial 

value problems of linear and nonlinear FDDEs and to comparison with that exact 

solution. 

 

 

The method 
 

Consider the FDDE written in the form 

 

10))),((),(,()( = xxgyxyxfxLy , 
 

1,......,1,0,)0( 0

)( −== Niyy ii

,                 …………  (1) 

 

,0),()( = xxxy  
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where the differential operator L is given by 
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)( mm
dx
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                      ………  (2) 

the variational iteration method was proposed by He [24], where a correction 

functional for Eq. (1) can be written as 

,0,)))((~),(~,()(()()(
0

1 −+= + ndssgysysfsLyxyxy

x

nnn  ….         (3) 

It is obvious that the successive approximations
,0, jy j , can be established 

by determining   a general Lagrange multiplier, which can be identified 

optimally via the variational theory. The function ny~
 is a restricted variation, 

which means
0~ =ny

. Therefore, we first determine the Lagrange multiplier   

that will be identified optimally via integration by parts. The successive 

approximations 
0),(1 + nxyn of the solution )(xy will be readily obtained upon 

using the Lagrange multiplier obtained and by using selective function 0y
. The 

initial values )0(y and 
)0(xy

are usually used for selecting the zeroth 

approximation 0y
. With   determined, then several 

approximations
0),( jxy j , follow immediately. Consequently, the exact 

solution may be obtained by using 

n
n

yy
→

= lim
 

In what follows, we will apply the VIM method to five physical models given 

in the form of FDDE to illustrate the strength of the method and to establish 

exact solutions for these models. 

 

Application 
 

In this section, we discuss the some example on Fractional delay differential 

equation (FDDE) by using the variational iteration method as given in Section 2. 

 

Example 3.1 [31, 32]   Consider the Linear FDDE of first-order 
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which has the exact solution                            

1,)( == forexy x .                         ………  (5) 
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where ny~   is considered as restricted variations, which mean 0=ny   . Its 

stationary conditions can be obtained as follows 
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The Lagrange multipliers, therefore, can be identified as   1)( −=x  

Therefore, from Eq.(6), we get 
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Now, using initial condition, we get  
 

1)(0 =xy                  and   from Eq.(7)  
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when fourth iteration of the solution of this FDDE are compared with other 

methods [5, 6], we found that the present method is best as shown Table I. The 

differences between the exact and numerical solutions are given in Table I 
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Table I. Comparison between exact solution & solution obtain through VIM of Example 3.1 

x Exact value Present Method Difference 

0.2 1.2214 1.2214 0.0 

0.4 1.49182 1.49181 0.00001 

0.6 1.82212 1.82201 0.00011 

0.8 2.22554 2.22506 0.00048 

0.9 2.4596 2.45871 0.00089 

 

Example 3.2 [33] Consider the Linear FDDE of second-order 
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To solve Eq. (8) by means of VIM, we construct a correction functional (see 

(3)), 

 

where ny~   is considered as restricted variations, which mean 0=ny . Its 

stationary conditions can be obtained as follows 
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Now, using initial condition, we get 

,0)(0 =xy and from  Eq.(10) 
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If we take five iterations of the series, we get the difference between the exact 

and numerical solution given in Table II. 

 

Table II. Comparison between exact solution & solution obtain through VIM of Example 3.2 

x Exact value Present Method Difference 

0 0 0 0 

0.2 0.04 0.04 2.21265E-17 

0.4 0.16 0.16 9.06301E-14 

0.6 0.36 0.36 1.17589E-11 

0.8 0.64 0.64 3.71221E-10 

1.0 1.00 1.00 5.40198E-9 

 

Example 3.3 Consider the Linear FDDE of third-order 
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To solve Eq. (11) by means of VIM, we construct a correction functional (see 

(3)), 
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where  ny~  is considered as restricted variations, which mean 0=ny   . Its 

stationary conditions can be obtained as follows 
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Now, using initial condition, we get 
3.02

2100 )( +−−++= xexcxccxy                                                            ……….  (14) 

where, 

.8799911749294037.1,7599833498588075.2,7599833498588075.2 210 =−== ccc

 

using Eq.(14) in Eq.(13) we get the result  for n = 0, 1, 2, 3,…. 

 

In Table III, we make a comparison between the present method and the 

exact. When we take only three iterations from the series, we obtain the results 

given in Table III. 

 

Table III. Comparison between exact solution & solution obtain through VIM of Example 3.3 

x Present Method Exact 

0.0 1.000000 1.000000 

0.2 0.818731 0.818731 

0.4 0.670320 0.670320 

0.6 0.548812 0.548812 

0.8 0.449330 0.449329 

1.0 0.367881 0.367879 

 

In the following examples, we apply the method to Non-Linear FDDE. 

 

Example 3.4 [34, 35] Consider the Non-Linear FDDE of first-order 
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To solve Eq. (11) by means of VIM, we construct a correction functional 

(see(3)), 
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where  ny~   is considered as restricted variations, which mean 0=ny   . Its 

stationary conditions  can be obtained as follows 
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Now, using initial condition, we get 

,0)(0 =xy  and from  Eq.(16) 
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and using Taylor series, the exact solution y(x) = sin x is readily obtained. 

Example 3.5 Consider the Non-Linear FDDE of third-order 
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To solve Eq. (17) by means of VIM, we construct a correction functional (see 

(3)) 
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Its stationary conditions can be obtained as follows 
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Now, using initial condition, we get 
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xxy =)(0    and from Eq. (19) 
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for three iterations only, the comparison between the exact solution and 

approximate solution is shown in Table IV and it shows that the errors are very 

small. 

 

Table IV. Comparison between exact solution & solution obtain through VIM of Example 3.5 

x Our Method Exact solution 

0.0 0.0 0.0 

0.2 0.19866933079506122 0.19866933079506122 

0.4 0.38941834230865047 0.3894183423086505 

0.6 0.5646424733950323 0.5646424733950355 

0.8 0.7173560908993959 0.7173560908995228 

1.0 0.841470984805614 0.84147109848078965 

 

From above examples, we can say that VIM gives approximate solutions in 

very good agreement with the exact solutions for only a few terms when solving 

DDEs. The programs for each case are written in the programming language 

Mathematica. 

 

 

Conclusion 
 

    An advance technique, New Variational Iteration Method (NVIM), is used 

to solve the Fractional Delay Differential Equations (FDDEs) is presented. The 

method gives rapidly convergent successive approximations and handles linear 

and nonlinear problems in a similar manner. NVIM gives several successive 

approximations through using the iteration of the correction functional. In this 

method, there is no specific need to handle nonlinear terms as in Adomian 

Decomposition Method (ADM) [28]. All the numerical results of FDDEs obtained 

by using the NVIM described earlier show very good agreement with the exact 

solutions for only a few terms. We believe that the efficiency of the method gives 

it much wider applicability which been to be explored further. The author claims 

that it is first time to use NVIM to solve FDDEs. Author leaves more 

investigation for further research regarding general applicability of this VIM. 
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